Abstract

Sex pheromone recognition is essential for mating in many insects and plays a major role in maintaining reproductive barriers. A previous study from our lab reported the evolutionary history of the pheromone receptor OR5 in Spodoptera moths. Using heterologous expression in Xenopus oocytes and site-directed mutagenesis, we found that eight amino acid substitutions were sufficient to recapitulate the evolution from an ancestral broadly-tuned to a highly specific receptor. Here, we confirmed this result using expression in Drosophila olfactory neurons. This further confirmed that multiple amino acid changes explain the shift in tuning breadth of Spodoptera OR5 during evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.