Abstract
It is well known that protein secondary-structure information can help the process of performing multiple alignment, in particular when the amount of similarity among the involved sequences moves toward the "twilight zone" (less than 30% of pairwise similarity). In this paper, a multiple alignment algorithm is presented, explicitly designed for exploiting any available secondary-structure information. A layered architecture with two interacting levels has been defined for dealing with both primary- and secondary-structure information of target sequences. Secondary structure (either available or predicted by resorting to a technique based on multiple experts) is used to calculate an initial alignment at the secondary level, to be arranged by locally scoped operators devised to refine the alignment at the primary level. Aimed at evaluating the impact of secondary information on the quality of alignments, in particular alignments with a low degree of similarity, the technique has been implemented and assessed on relevant test cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.