Abstract
The application of piezoelectric materials allows many advantages such as reducing the number of parts and manufacturing cost of a mechanical system. Despite these merits, the performance predictions and optimization of piezoelectric-material-based devices are challenging because of the mutual coupling between electricity and mechanics. The analysis and the optimization become more challenging when acoustics are to be coupled with piezoelectric-material-based devices. In the present study, the mutual couplings among electric, mechanics, and acoustics are simulated and its applications for the topology optimization of an acoustic energy focuser are presented. Owing to the local optima issue, some blurred and unsuccessful layouts are obtained. To overcome this issue and impose the manufacturing constraint, a modified morphology density filter is also developed. With the presented approach, it is possible to determine some optimized piezoelectric rings to focus acoustic energy. Compared with the existing design methods, some better designs in terms of objective value can be obtained by the present approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.