Abstract

This paper presents a multiphysics modeling of a switched reluctance motor (SRM) to simulate the acoustic radiation of the electrical machine. The proposed method uses a 2-D finite-element model of the motor to simulate its magnetic properties and a multiphysics mechatronic model of the motor and controls to simulate operating conditions. Magnetic forces on the stator are calculated using finite-element analysis and are used as the excitation on a forced response analysis that contains a finite-element model of the motor stator structure. Finally, sound power levels are calculated using the boundary element method. Simulation results of the model are shown and compared with experimental measurements for a four-phase 8/6 SRM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.