Abstract

Light could interact differently with thin-film contaminants and particle contaminates because of their different surface morphologies. In the case of dry laser cleaning of small transparent particles, it is well known that particles could function like mini-lenses, causing a localized near-field hot spot effect on the cleaning process. This paper looks into a special, yet important, phenomenon of dry laser cleaning of particles trapped in micro-sized slots. The effects of slot size, particle size and particle aggregate states in the cleaning process have been theoretically investigated, based on a coupled electromagnetic-thermal-mechanical multiphysics modelling and simulation approach. The study is important for the development and optimization of laser cleaning processes for contamination removal from cracks and slots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.