Abstract

The failure of overhead transmission lines in the United States can lead to significant economic losses and widespread blackouts, affecting the lives of millions. This study focuses on analyzing the failure of transmission lines, specifically considering the effects of wind, ambient temperature, and current demands, incorporating minimal and significant pre-existing damage. We propose a multiphysics framework to analyze the transmission line failures across sensitive and affected states of the United States, integrating historical data on wind and ambient temperature. By combining numerical simulation with historical data analysis, our research assesses the impact of varying environmental conditions on the reliability of transmission lines. Our methodology begins with a deterministic approach to model temperature and damage evolution, using phase-field modeling for fatigue and damage coupled with electrical and thermal models. Later, we adopt the probability collocation method to investigate the stochastic behavior of the system, enhancing our understanding of uncertainties in model parameters, conducting sensitivity analysis to identify the most significant model parameters, and estimating the probability of failures over time. This approach allows for a comprehensive analysis of factors affecting transmission line reliability, contributing valuable insights into improving power line’s resilience against environmental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.