Abstract
3D micro and nanoconductors have emerged as essential components of next generation energy and sensor technologies. This work investigates novel methods to tailor the topography of electroplated 3D conductive components, such as VIAs, using the FEM in COMSOL Multiphysics. This enables meeting the design specifications of flat, convex, or concave substrate-distal electroactive surfaces. Flat conductor surfaces are ideal for microbump soldering and flip-chip fabrication methods and concave/convex designs increase the number of available electrode reaction sites for sensor applications. 2D/3D multiphysics simulations are performed comprising: (1) electrochemistry modeling with the Nernst-Planck and Butler-Volmer formulations for mass transfer and reaction kinetics, and (2) a deformed geometry physics module to track the growing electrode during electrodeposition. Simulation results are compared to directly corresponding experimental work, with positive correlation. Our findings enable tailored and scalable electroactive surface processing options, which can be readily integrated into pre-existing research and industry standard operating procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.