Abstract

The aim of this paper is to present an analytical multiphysical model of Permanent Magnet Synchronous Motors (PMSMs) dedicated to fault detection purpose. The electromagnetic aspect is based on the analytical calculation of the Maxwell pressure in the air-gap. An existing mechanical approach is improved to compute natural frequencies of the machine taking into account its different parts. A better agreement has been obtained between analytical results and those issued from a Finite Element Analysis (FEA) applied to two different stator structures. The dynamic displacement signal of the stator is finally estimated in the space-time domain. Different operating modes of the machine can be simulated by changing some model parameters. In this paper, the rotor eccentricity fault is investigated and detected by the analysis of the vibration signal. Therefore, the proposed multiphysical model could provide healthy and faulty characteristics and could be suitably used for fault detection and diagnosis tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.