Abstract

ABSTRACTMicrowave sintering represents the coupling of multiple physical phenomena. It involves the distribution of electromagnetic fields, heat generation by electromagnetic effects, heat conduction in the material, and evolution of the densification in the sintered components. This paper describes the mathematical models and the numerical methods used to simulate the complex sintering process. Simulation results are provided for the prediction of shrinkage and evolution of the relative density of the sintered materials. A full cycle simulation of the microwave sintering process have been realized on the COMSOL Multiphysics finite element software platform. This work provides an important approach to studying the process of microwave sintering. The simulation results for sintering submicron zirconia powders are compared with experimental results in terms of the relative densities of the sintered material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.