Abstract

We present the first detailed study using multispectral multiphoton fluorescence lifetime imaging to differentiate basal cell carcinoma cells (BCCs) from normal keratinocytes. Images were acquired from 19 freshly excised BCCs and 27 samples of normal skin (in & ex vivo). Features from fluorescence lifetime images were used to discriminate BCCs with a sensitivity/specificity of 79%/93% respectively. A mosaic of BCC fluorescence lifetime images covering >1 mm2 is also presented, demonstrating the potential for tumour margin delineation. Using 10,462 manually segmented cells from the image data, we quantify the cellular morphology and spectroscopic differences between BCCs and normal skin for the first time. Statistically significant increases were found in the fluorescence lifetimes of cells from BCCs in all spectral channels, ranging from 19.9% (425–515 nm spectral emission) to 39.8% (620–655 nm emission). A discriminant analysis based diagnostic algorithm allowed the fraction of cells classified as malignant to be calculated for each patient. This yielded a receiver operator characteristic area under the curve for the detection of BCC of 0.83. We have used both morphological and spectroscopic parameters to discriminate BCC from normal skin, and provide a comprehensive base for how this technique could be used for BCC assessment in clinical practice.

Highlights

  • Basal cell carcinoma (BCC) is most common in caucasian populations and has a high prevalence in the western world [1,2] with a rising incidence in all age groups [3,4].Initial assessment is currently made on clinical examination and uncertainty concerning the diagnosis can only be resolved by histology at present

  • Skin was imaged from the scalp, face, neck, chest, forearm and back for BCCs and face, forearm, back and lower leg for normal skin

  • We have shown that morphological features described by Seidenari et al [20] together with the newly proposed feature of ‘merging cells’ provide a good specificity and sensitivity for identifying BCCs from fluorescence lifetime imaging (FLIM) images using a visual architectural analysis

Read more

Summary

Introduction

Basal cell carcinoma (BCC) is most common in caucasian populations and has a high prevalence in the western world [1,2] with a rising incidence in all age groups [3,4].Initial assessment is currently made on clinical examination and uncertainty concerning the diagnosis can only be resolved by histology at present. The tumor must first be excised, fixed, processed, sectioned and stained before it can be reviewed. Biopsies can be both uncomfortable and cosmetically disfiguring to the patient and time-consuming and expensive to the clinician. The need for histological confirmation is required in Mohs micrographic surgery to ensure clear margins and is often required in assessing clearance or recurrence following non-invasive topical therapy for malignancies. A non-invasive imaging modality capable of producing optically sectioned images in situ with high spatial resolution and correlation with histology is highly desirable. A number of label-free imaging modalities have been developed for dermatological applications [5] including high frequency ultrasound, optical coherence tomography, confocal laser scanning microscopy and multiphoton tomography (MPT)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.