Abstract
Multiphoton microscopy (MPM), with the advantages of improved penetration depth, decreased photo-damage, and optical sectioning capability, has become an indispensable tool for biomedical imaging. The combination of multiphoton fluorescence (MF) and second-harmonic generation (SHG) microscopy is particularly effective in imaging tissue structures of the ocular surface. This work is intended to be a review of advances that MPM has made in ophthalmic imaging. The MPM not only can be used for the label-free imaging of ocular structures, it can also be applied for investigating the morphological alterations in corneal pathologies, such as keratoconus, infected keratitis, and corneal scar. Furthermore, the corneal wound healing process after refractive surgical procedures such as conductive keratoplasty (CK) can also be studied with MPM. Finally, qualitative and quantitative SHG microscopy is effective for characterizing corneal thermal denaturation. With additional development, multiphoton imaging has the potential to be developed into an effective imaging technique for in vivo studies and clinical diagnosis in ophthalmology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.