Abstract

This is the first of two papers studying multiphoton ionization (MPI) in superintense, high-frequency laser fields. They are based on a general iteration scheme in increasing powers of the inverse frequency. To lowest order in the frequency, i.e., the high-frequency limit, the atom was shown to be stable against decay by MPI, though distorted. To next order in the iteration, an expression for the MPI amplitude was obtained. In the present paper, we present general developments from this expression, valid for arbitrary polarization, binding potential, intensity, and initial state. First we analyze the symmetry of the angular distributions of photoelectrons determined by this expression for the MPI amplitude. This expression can explain the asymmetries in the angular distributions of photoelectrons occurring in the case of elliptic polarization that were recently reported in experiments. In the radiation regime where our theory applies these asymmetries are, however, weak. In certain instances our theory yields asymmetries in cases where lowest-order perturbation theory (LOPT) fails to predict them. We prove that at low intensities our expression for the MPI amplitude yields results in agreement with LOPT evaluated at high frequencies. An important part of this paper consists, however, of the derivation of an alternative form for the MPI amplitude of atomic hydrogen, which is substantially simpler, though somewhat less accurate. We study the consequences of this simplified expression for the case of linearly polarized fields in the following paper [Phys. Rev. A 44, xxxx (1991)].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call