Abstract

The mechanisms leading to laser multiphoton ionization and dissociation (MPI/MPD) of osmium tetroxide (OsO4) have been investigated from measurements of the kinetic energies of product ions (Os+, Os2+, OsO+, O2+, O+) and photoelectrons as a function of the laser wavelength. Neutral channels, intermediate to the dominant Os+ ionization channel, such as OsO4→OsO4−n+nO are examined using resonance-enhanced multiphoton ionization (REMPI) of the fast O atoms. Equipartition of the available photon energy among the fragments is observed. The wavelength dependence of the Os+ ion signal suggests that one or more of the steps leading to Os+ ions involve molecular ions and/or excited neutral atoms. The observed preponderance of very slow (<0.2 eV) electrons also supports this interpretation. Os2+ is shown to result primarily from REMPI of Os+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call