Abstract

In conventional time-resolved laser-induced incandescence (TiRe-LII) measurements, a laser pulse heats the nanoparticles within a probe volume of aerosol, and the particle size distribution and other characteristics are inferred from the observed incandescence decay rate, which is connected to the change in sensible energy through a spectroscopic model. There is strong evidence, however, that for some aerosol systems, the incandescence signal is contaminated with other non-incandescent emission sources. Recent TiRe-LII measurements on polydisperse aerosolized silver and gold nanoparticles energized with a 1064 nm laser pulse exhibit broadband emission that is temporally aligned with the temporal profile of the laser pulse, suggesting that the signal is due to non-thermal emission. One candidate for this emission phenomenon is multiphoton-induced upconversion luminescence, in which the conduction-band electron gas is heated up to an effective lattice temperature, resulting in luminescence due to high-energy intraband transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.