Abstract

High order infrared multiphoton excitation in the ground electronic state of collision free CrO2Cl2 has resulted in visible fluorescence. The prompt fluorescence has been studied as a function of laser fluence, pulse duration, under collisional and collision-free conditions and was shown to arise from a spontaneous one-photon radiative decay of molecular eigenstates. Intramolecular scrambling of vibronic levels corresponding to the ground state electronic manifold with a discrete level(s) belonging to the low lying excited electronic state is believed to be the origin of such eigenstates. This fluorescent channel is shown to compete with a dissociative channel forming CrO2Cl + CI; the radical further dissociates to the stable product Cr02. The threshold for fluorescence versus dissociation is discussed and a branching ratio, and consequent chemical mechanism are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.