Abstract

Quantum dot bioconjugates offer unprecedented opportunities for monitoring biological processes and molecular interactions in cells, tissues, and organs. We are interested in developing applications that permit investigation of physiological processes and cytoskeletal organization in live cells, and allow imaging of complex organs, such as the auditory and vestibular sensory structures of the inner ear. Multiphoton microscopy is a powerful technique for acquiring images from deep within a sample while reducing phototoxic effects of laser light exposure on cells. Previous studies have established that a solid-state Nd:YLF laser can be used to acquire two-photon and three-photon images from live cells while minimizing phototoxic side effects (Wokosin et al., 1996, Bioimaging, 4:208-214; Squirrell et al., 1999, Nature Biotechnology, 8:763-767). We present here the results of experiments using an all-solid-state Nd:YLF 1047 nm femtosecond laser (Microlase DPM1000) source to excite quantum dot bioconjugates. Cells were labeled with Qdot (Quantum Dot Corporation) bioconjugates or with Alexa Fluor (Molecular Probes) bioconjugates and then imaged with a BioRad 1024 confocal microscope configured for multiphoton imaging using internal or external (non-descanned) detectors. Results demonstrate that the Nd:YLF laser can be used to stimulate fluorescence emission of quantum dots and Alexa Fluor bioconjugates in cultured amphibian (Xenopus) and mammalian (rat, chinese hamster) cells. We conclude that the Nd:YLF laser is a viable excitation source that extends the applicability of quantum dots for investigation of biological processes using multiphoton microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.