Abstract
The clinical usefulness of 5-ALA guided detection of tumor tissue has been demonstrated for a number of malignancies. However, current techniques of intraoperative detection of protoporphyrin IX fluorescence in situ do not offer subcellular resolution. Therefore, discrimination of non-specific 5-ALA induced fluorescence remains difficult. In this study we have used an orthotopic glioma model to analyze PpIX fluorescence in tumor tissue and normal brain by multiphoton excitation microscopy after intraperitoneal administration of 5-ALA. A DermaInspect in vivo imaging system was used for autofluorescence measurements at 750 nm excitation and detection in the green channel of a standard photomultiplier module. For detection of PpIX fluorescence at different excitation wavelengths a red sensitive version of the photomultiplier and a filter combination of short pass filters and a color glass long pass filter was used restricting the sensitivity in the red channel to a range of 580-700 nm. Multiphoton microscopy allowed a higher structural definition of tumor tissue based on the excitation of 5-ALA induced PpIX fluorescence compared to autofluorescence imaging. The high resolution of multiphoton microscopy allowed discrimination of fluorescence from the cytoplasm of tumor cells and 5-ALA induced PpIX fluorescence of normal brain parenchyma adjacent to tumor. Fluorescence lifetime imaging showed significantly longer fluorescence lifetimes of 5-ALA induced PpIX fluorescence in tumor tissue compared to normal brain. This allowed definition and visualization of the tumor/brain interface based on this parameter alone. Multiphoton microscopy of 5-ALA induced PpIX fluorescence in brain tumor tissue conceptually provides a high resolution diagnostic tool, which in addition to structural information may also provide photochemical/functional information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.