Abstract

We report on the photodissociation dynamics of tert-pentyl bromide near 265 nm investigated by time-sliced velocity map imaging. The speed and angular distributions have been analyzed for both the ground-state Br((2)P(3∕2)) atom (denoted Br) and the spin-orbit excited-state Br((2)P(1∕2)) atom (denoted Br*). The speed distributions of Br and Br* atoms are all found to consist of three Gaussian components, which correlate to three independent dissociation pathways on the excited potential energy surfaces: (1) the high translational energy (E(T)) component from the prompt dissociation along the C-Br stretching mode, (2) the middle E(T) component from the repulsive mode along the C-Br stretching coupled with some bending motions, and (3) the low E(T) component from the repulsive mode along the C-Br stretching coupled with more bending motions. More interestingly, we have also observed the tert-C(5)H(11)(+) ions in 263-267 nm. The near-zero kinetic energy distributions extracted from the three tert-C(5)H(11)(+) images near 265 nm show the typical characteristics that are attributable to multiphoton dissociative ionization, suggesting the existence of a neutral superexcited state of the parent tert-pentyl bromide molecule. The contribution of bromine atoms formed in this dissociative ionization channel adds in the total relative distribution of low E(T) component in the Br*(Br) formation channel, which reasonably explains the abnormal distributions observed in between the middle and low E(T) components in the Br*(Br) formation channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call