Abstract

This study described the multiphasic and multi-sized lignocellulose-based suspension (LBS) prepared by green method and its adsorption and phase behavior at O/W interface. The LBS consisting of lignin containing microfibrils (LMFs), lignin containing cellulose nanofibers (LCNFs), and lignin nanoparticles (LNPs), was obtained by mechanical fibrillation and high-shear treatments. They had different functions in emulsion stabilization: (1) synergistic irreversible adsorption of LCNFs and LNPs limited the coalescence of droplets and formed micro-sized droplets; (2) droplets filled in the LMFs network creating a strong fiber-droplet network structure. The fluorescent micrographs confirmed the synergistic irreversible adsorption of LCNFs and LNPs on the surface of the droplets, which was conductive to the high interfacial stability. The droplets were deformed rather than being destroyed under the high flow speed. The increasing viscosity, improving gel-like behavior, decreasing creep compliance and increasing yield stress demonstrated that the internal droplets can support the fiber network to delay the destruction under shear force. And the fiber-droplet network can automatically regenerate in situ after completed destruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call