Abstract
We describe and rigorously justify the nonlinear interaction of highly oscillatory waves in nonlinear Schrödinger equations, posed on Euclidean space or on the torus. Our scaling corresponds to a weakly nonlinear regime where the nonlinearity affects the leading order amplitude of the solution, but does not alter the rapid oscillations. We consider initial states which are superpositions of slowly modulated plane waves, and use the framework of Wiener algebras. A detailed analysis of the corresponding nonlinear wave mixing phenomena is given, including a geometric interpretation of the resonance structure for cubic nonlinearities. As an application, we recover and extend some instability results for the nonlinear Schrödinger equation on the torus in negative order Sobolev spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.