Abstract

• The OBM and gas multiphase transient flow models in wellbore annuli are established. • The phase-transition behaviors of gas and OBM in a wellbore annulus are obtained. • The variation of pit gain level, bottom hole pressure, and gas holdup are obtained. Transient-state gas and oil-based mud (OBM) two-phase flow in wellbore annuli will occur during gas kick. The phase behavior of influx gas and OBM will make the gas kick during OBM drilling more complicated. There are three possible cases in an annulus: only liquid flow in the entire annulus, gas and liquid two-phase flow in part of the annulus, and gas and liquid two-phase flow in the entire annulus. First, the phase behaviors of gas and OBM in wellbore annuli are studied based on the phase behavior of methane and diesel. A multiphase transient-flow model in annuli during gas kick based on OBM is then established based on gas–liquid two-phase flow theory and on flash theory in annuli. The influences of phase behavior in annuli and annular geometry are taken into account. The local flow parameters are predicted by the hydrodynamic models and the local thermodynamic parameters are predicted by the heat-transfer models in the corresponding flow pattern. The proposed model has a better performance, compared with two other models, against the published experimental data. Finally, the variation of pit gain, well-bottom hole pressure, and gas void fraction are obtained, leading to a better understanding of the occurrence and evolution mechanism of gas kick during deepwater drilling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call