Abstract
ABSTRACT Kinetics of multiply ferrite/bainite phase transformation of HSLA steels is investigated by experiments and cellular automaton (CA) simulation. Peak-differentiation method to elucidate the sequential ferrite and bainite phase transformation individually, which is verified by the CA simulation. Such CA modelling executed using classic JMAK theory, but also gives an insight of microstructure evolution of the multi-phase transformation routine on different cooling rate. From that, it enables classic JMAK modelling to capture the detached phase transformation with different growth models and interface-migration mechanisms. Also, we find that the final phase constitution is sensitive to the cooling rate. With increasing the cooling rate, bainite sheaves nucleated at prior austenite boundaries and ferrite/austenite interfaces are significantly facilitated, which seriously inhibits the growth of prior ferrites. The scenario can be interpreted by the CA simulation and the influence of the cooling rate on sequential multi-phase transformation can be also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.