Abstract

Extensive research has been conducted by the manufacturing industry to enhance the efficiency of drilling processes by focusing on the utilization of nanoenhanced cutting fluids that possess excellent heat conductivity. Due to their eco-friendliness and adaptability of physical and chemical properties, ionic fluids offer enormous potential for application as cutting fluids. This study investigates the computational fluid dynamics analysis of the heat transfer performance of various ionanofluid pairs dispersed with nanoparticles as cutting fluids in the drilling process using Ansys Fluent software. For this purpose, 1-Hexyl-3-methyl-imidazolium-tetrafluoroborate is considered the ionic fluid, and its thermal behavior is examined by dispersing it with nanoparticles of copper, silver, and multiwalled carbon nanotubes (MWCNT) at different particle volume fractions and Reynolds numbers. The workpiece is composed of an alloy of titanium Ti–6Al–4V, while the drill bit is made of tungsten carbide-cobalt. It is observed that the ionic nanocoolant mist emanates from the spray tip and moves towards the drill bit-workpiece interface. Initially, the coolant's velocity is greatest close to the orifice, and as time passes, it approaches the drilling space. The data indicates that the spraying velocity of the coolant augments over time and that it disperses heat at the tool-chip interface. The results help us validate the flow and interaction of ionanocoolant with the drilling zone. With a rise in the volume fraction of added nanoparticles and Reynolds number, the results indicated a significant decrease in the drilling temperature. With a higher particle volume fraction, the MWCNT-ionic coolant combination decreases the drilling temperature of pure ionic liquid by 25.64 %. The copper, silver, and MWCNT ionanofluids enhance the average heat transfer coefficient of pure ionic coolant by 35.14 %, 47.42 %, and 62.75 %, respectively. In addition, MWCNT nanocoolants demonstrated improved thermal performance and heat removal rate in comparison to copper and silver ionanocoolants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call