Abstract
High global plastic production volumes have led to the widespread presence of bisphenol compounds in human living and working environments. The most common bisphenol, bisphenol A (BPA), despite being endocrine disruptive and estrogenic, is still not fully banned worldwide, leading to continued human exposure via particles in air, dust, and surfaces in both outdoor and indoor environments. While its abundance is well documented, few studies have addressed the chemical transformations of BPA, the properties of its reactive products, and their toxicity. Here, the first gas-surface multiphase ozonolysis experiment of BPA thin films, at a constant ozone mixing ratio of 100 ppb, was performed in a flow tube for periods up to 24 h. Three transformation products involving the addition of 1, 2, and 3 oxygen atoms to the molecule were identified by LC-ESI-HRMS analyses. Exposure of indoor air to thin BPA surface films and BPA-containing thermal paper over periods of days validated the flow tube experiments, demonstrating the rapid nature of this multiphase ozonolysis reaction at atmospherically relevant ozone levels. Multiple transformation pathways are proposed that are likely applicable to not only BPA but also emerging commercial bisphenol products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.