Abstract

Abstract. Heterogeneous/multiphase oxidation of SO2 by NO2 on solid or aqueous particles is thought to be a potentially important source of sulfate in the atmosphere, for example, during heavily polluted episodes (haze), but the reaction mechanism and rate are uncertain. In this study, in order to assess the importance of the direct oxidation of SO2 by NO2 we investigated the heterogeneous/multiphase reaction of SO2 with NO2 on individual CaCO3 particles in N2 using Micro-Raman spectroscopy. In the SO2 ∕ NO2 ∕ H2O ∕ N2 gas mixture, the CaCO3 solid particle was first converted to the Ca(NO3)2 droplet by the reaction with NO2 and the deliquescence of Ca(NO3)2, and then NO2 oxidized SO2 in the Ca(NO3)2 droplet forming CaSO4, which appeared as needle-shaped crystals. Sulfate was mainly formed after the complete conversion of CaCO3 to Ca(NO3)2, that is, during the multiphase oxidation of SO2 by NO2. The precipitation of CaSO4 from the droplet solution promoted sulfate formation. The reactive uptake coefficient of SO2 for sulfate formation is on the order of 10−8, and RH enhanced the uptake coefficient. We estimate that the direct multiphase oxidation of SO2 by NO2 is not an important source of sulfate in the ambient atmosphere compared with the SO2 oxidation by OH in the gas phase and is not as important as other aqueous-phase pathways, such as the reactions of SO2 with H2O2, O3, and O2, with or without transition metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.