Abstract

Abstract Sediment scouring is a common example of highly dynamic sediment transport. Considering its complexities, the accurate prediction of such a highly dynamic multiphase granular flow system is a challenge for the traditional numerical techniques that rely on a mesh system. The mesh-free particle methods are a newer generation of numerical techniques with an inherent ability to deal with the deformations and fragmentations of a multiphase continuum. This study aims at developing and evaluating a multiphase mesh-free particle model based on the weakly compressible moving particle semi-implicit (WC-MPS) formulation for simulation of sediment scouring. The sediment material is considered as a non-Newtonian viscoplastic fluid, whose behavior is predicted using a regularized μ(I) rheological model in combination with pressure-dependent yield criteria. The model is first validated for a benchmark problem of viscoplastic Poiseuille flow. It is then applied and evaluated for the study of two classical sediment scouring cases. The results show that the high-velocity flow currents and the circulations can create a low-viscosity region on the surface of the sediment continuum. Comparing the numerical results with the experimental measurements shows a good accuracy in prediction of the sediment profile, especially the shape and dimensions of the scour hole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.