Abstract

This paper describes the application of a coupled acoustic model/large-eddy simulation approach to assess the effect of fuel split on combustion instabilities in an industrial ultra-low-NOx annular combustor. Multiphase flow LES and an analytical model (analytical tool to analyze and control azimuthal modes in annular chambers (ATACAMAC)) to predict thermoacoustic modes are combined to reveal and compare two mechanisms leading to thermoacoustic instabilities: (1) a gaseous type in the multipoint zone (MPZ) where acoustics generates vortex shedding, which then wrinkle the flame front, and (2) a multiphase flow type in the pilot zone (PZ) where acoustics can modify the liquid fuel transport and the evaporation process leading to gaseous fuel oscillations. The aim of this paper is to investigate these mechanisms by changing the fuel split (from 5% to 20%, mainly affecting the PZ and mechanism 2) to assess which mechanism controls the flame dynamics. First, the eigenmodes of the annular chamber are investigated using an analytical model validated by 3D Helmholtz simulations. Then, multiphase flow LES are forced at the eigenfrequencies of the chamber for three different fuel split values. Key features of the flow and flame dynamics are investigated. Results show that acoustic forcing generates gaseous fuel oscillations in the PZ, which strongly depend on the fuel split parameter. However, the correlation between acoustics and the global (pilot + multipoint) heat release fluctuations highlights no dependency on the fuel split staging. It suggests that vortex shedding in the MPZ, almost not depending on the fuel split, is the main feature controlling the flame dynamics for this engine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.