Abstract

Weathering processes affecting pyritic wastes may generate huge amounts of acid waters with high concentrations of potentially toxic contaminants (acid mine drainage). Acid mine drainage is mainly produced in the vadose zone. In the present study, a coupled non-isothermal multiphase flow and reactive transport model of the vadose zone of sulfide mine tailings was developed. The geochemical model included kinetically controlled reactions for Fe(II)-oxidation and for the dissolution of sulfide and aluminosilicate phases and the Pitzer ion-interaction model to describe the behavior of the pore-water solutions. Model results were compared with experimental observations in unsaturated column experiments under strongly evaporative conditions similar to arid or semiarid climates. Evolution trends for temperature, water saturation, evaporation rates, pore-water hydrochemistry and mineral phases observed during the drying experiment were adequately reproduced. The coupled model reproduced the increase of solute concentrations in the column top and the precipitation of a crust of secondary mineral phases. This crust became a barrier for water vapour diffusion to the atmosphere and modified the thermohydraulic behavior of the tailings. Enhanced downward migration of water vapour and its condensation in this colder end of the column were correctly taken into account by the model, which reproduced the dilution observed in the lower part of the column during the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.