Abstract

BackgroundTo evaluate whether machine learning algorithms allow the prediction of Child-Pugh classification on clinical multiphase computed tomography (CT).MethodsA total of 259 patients who underwent diagnostic abdominal CT (unenhanced, contrast-enhanced arterial, and venous phases) were included in this retrospective study. Child-Pugh scores were determined based on laboratory and clinical parameters. Linear regression (LR), Random Forest (RF), and convolutional neural network (CNN) algorithms were used to predict the Child-Pugh class. Their performances were compared to the prediction of experienced radiologists (ERs). Spearman correlation coefficients and accuracy were assessed for all predictive models. Additionally, a binary classification in low disease severity (Child-Pugh class A) and advanced disease severity (Child-Pugh class ≥ B) was performed.ResultsEleven imaging features exhibited a significant correlation when adjusted for multiple comparisons with Child-Pugh class. Significant correlations between predicted and measured Child-Pugh classes were observed (ρLA = 0.35, ρRF = 0.32, ρCNN = 0.51, ρERs = 0.60; p < 0.001). Significantly better accuracies for the prediction of Child-Pugh classes versus no-information rate were found for CNN and ERs (p ≤ 0.034), not for LR and RF (p ≥ 0.384). For binary severity classification, the area under the curve at receiver operating characteristic analysis was significantly lower (p ≤ 0.042) for LR (0.71) and RF (0.69) than for CNN (0.80) and ERs (0.76), without significant differences between CNN and ERs (p = 0.144).ConclusionsThe performance of a CNN in assessing Child-Pugh class based on multiphase abdominal CT images is comparable to that of ERs.

Highlights

  • To evaluate whether machine learning algorithms allow the prediction of Child-Pugh classification on clinical multiphase computed tomography (CT)

  • Computer tomography (CT) is routinely used in the diagnosis and clinical management of patients with chronic liver disease [1, 2] and it is recognised as a sensitive diagnostic tool for evaluating morphological changes of liver parenchyma [2,3,4]

  • Accurate assessment of liver cirrhosis seems to be challenging against the background of the inherent disease heterogeneity

Read more

Summary

Introduction

To evaluate whether machine learning algorithms allow the prediction of Child-Pugh classification on clinical multiphase computed tomography (CT). Computer tomography (CT) is routinely used in the diagnosis and clinical management of patients with chronic liver disease [1, 2] and it is recognised as a sensitive diagnostic tool for evaluating morphological changes of liver parenchyma [2,3,4]. To widen the value of image-based diagnosis, recent studies investigated machine learning algorithms and their potential clinical application, in particular the value of predicting biological or molecular characteristics through image-specific features [8,9,10,11]. In adjunction with clinical assessment, they continue to form the basis for the most widely used clinical scores for liver cirrhosis, that is, the Child-Pugh classification and the model of end-stage liver disease (MELD) [18]

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call