Abstract

Rotary shaft seals prevent the exchange of fluid at shaft passages. Their function and service life depend decisively on the temperature in the contact area between the sealing edge and the shaft. Since the temperature depends on both the generation of frictional heat in the contact area and the heat transfer to the surrounding sealing system, the design of the sealing system is crucial. Within the scope of this work, multiphase conjugate heat-transfer analyses were performed considering different assembly situations. The computed results were presented and contrasted to experimental data. This resulted in a valid model for predicting the temperature in the sealing system, which provided insight into the influence of the sealing surroundings on the contact temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.