Abstract

Modelling of CO2–H2O mixture flows in a porous media under subcritical conditions remains a challenging issue for carbon sequestration and possible leakage scenarios. Currently, there is no widely used and generally accepted numerical model that can simulate three-phase flows with both gaseous and liquid CO2-rich phases. We propose a new compositional modelling approach for sub- and supercritical three-phase flows of water, liquid CO2 and gaseous CO2. The new approach is based on the calculation of the thermodynamic potential of the mixture as a function of pressure, total enthalpy and mixture composition and storing it values as a spline table, which is then used for the hydrodynamic simulation. A three-parametric generalisation of the Peng–Robinson equation of state is used to fit the experimental data on CO2–H2O mixture properties.Using the approach developed in this paper, we assess several sample problems of CO2 injection in shallow reservoirs for the purpose of testing the model. We provide the simulation results for a simple 1D problem with a homogeneous reservoir and for a more complicated 2D problem with a highly heterogeneous reservoir using data from the 10th SPE comparative project reservoir. We analyse the temperature variations in the reservoir due to the dissolution of CO2 in water and the evaporation of liquid CO2. The interplay of these processes results in a complicated non-monotonic temperature distribution. At different distances from the CO2 injection point, the temperature can either decrease or increase with respect to the reservoir temperature before injection. The main phenomenon responsible for the considerable temperature decline around the CO2 injection point is the liquid CO2 evaporation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.