Abstract

The Army Research Laboratory has developed a scaleable, 3D, multiphase, computational fluid dynamics (CFD) code with application to gun propulsion (interior ballistics) modeling. The NGEN3 code, which incorporates general continuum equations along with auxiliary relations into a modular code structure, is readily transportable between computer architectures and is applicable to a wide variety of gun propulsion systems. Two such systems are the Army's Modular Artillery Charge System (MACS) and the Future Combat System (FCS). The MACS is being developed for indirect fire cannon on both current and developing (e.g., Crusader) systems. The efficiency of the MACS charge is dependent on proper flamespreading through the propellant modules; a process that has been repeatedly demonstrated in gun firings, successfully photographed using the ARL ballistics simulator, and numerically modeled using the NGEN3 code. The FCS requires weapons systems exhibiting increased range and accuracy. One of the technologies under investigation to achieve these goals is the electrothermal-chemical (ETC) propulsion concept, in which electrically generated plasma is injected into the gun chamber igniting the high-loadingdensity (HLD) solid propellant charge. NGEN3 code development and application to the MACS and FCS is currently a DoD HPC Challenge Project (No. 112) and is being greatly advanced by access to the DoD high performance computers (HPCs). Associate Fellow AIAA. Propulsion Physics Team Leader, Ballistics and Weapons Concepts Division, Weapons and Materials Research Directorate. Mechanical Engineer, Propulsion Physics Team, Ballistics and Weapons Concepts Division, Weapons and Materials Research Directorate. This paper is declared a work of the U.S. Government and is not subject to copyright protection in the United States. INTRODUCTION A solid propellant gun system consists of a reaction chamber connected to a gun tube through which a projectile is guided once propelled by pressurization of the chamber. Chamber pressurization is accomplished by placing a solid propellant (SP) charge in the chamber and igniting it by various means. Current SP charges are generally complex structures consisting of hundreds or even thousands of distinct regularly formed (e.g., spherical, cylindrical) grains, which may be loaded in either regular or random arrangements. In addition to small-scale voidage between grains (i.e., porosity) many charges also contain large-scale voidage (i.e., ullage), which surrounds the entire charge (such as when the charge does not fill the entire chamber volume) or separates distinct subcharges (i.e., increments or modules) that together comprise the whole charge. The addition of energy to the chamber, usually near the gun breech, or rearmost end of the chamber, and in some cases through a tube extending along the centerline of the chamber, ignites the SP. In general, all of the grains are not ignited simultaneously, but an ignition flame spreads from the breech to the projectile base. The burning of the SP transforms chemical energy into heat as hot gases evolve from the surface of each grain of propellant. Initially the projectile resists movement allowing the pressure in the chamber to climb rapidly. Since the burn rate of the propellant is proportional to the pressure, hot gases are produced at an accelerated rate until peak pressure is reached in the chamber. Movement of the projectile down the gun tube, usually slight before peak pressure and much more significant afterwards, causes the chamber volume to increase, and generates rarefaction waves, which lower the pressure and thus the burn rate of the propellant. Upon ignition and burning, the gas dynamic flowfield in the gun chamber takes on a highly complex structure that includes the dynamics of propellant motion and combustion and various gas dynamic flow phenomena such as turbulent mixing, highly transient pressure waves, steep gradients in porosity and temperature, nonideal thermodynamics, and gas generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.