Abstract

The interior ballistics simulations in 9 mm small gun chamber were conducted by implementing the process into the mixture multiphase model of Fluent V6.3 platform. The pressure of the combustion chamber, the velocity, and the travel of the projectile were investigated. The performance of the process, namely, the maximum pressure, the muzzle velocity, and the duration of the process was assessed. The calculation method is validated by the comparison of the numerical simulations results in the small gun with practical tests, and with lumped-parameter model results. In the current numerical study, both the characteristics and the performance of the interior ballistic process were reasonably predicted compared with the practical tests results. The impact of the weight charge on the interior ballistic performances was investigated. It has been found that the maximum pressure and the muzzle velocity increase with the increase of the charge weight.

Highlights

  • Small guns have been used for a long time

  • A hand gun can be modeled with two connected cylinders representing, respectively, the combustion chamber and the launching tube

  • There are a considerable number of numerical and experimental works dedicated to large-caliber guns, which make the validation of numerical simulation of those types of guns easy; a limited number of works have been done for small-caliber guns

Read more

Summary

Introduction

Small guns have been used for a long time. Nowadays, they are still the most used in military, sports, and tests. A hand gun can be modeled with two connected cylinders representing, respectively, the combustion chamber and the launching tube (the barrel of the gun). We can assume that the two cylinders have the same diameter because for small gun using rimless ammunition the diameters are almost the same (see Figure 1). The breech contains the primer, a small space filled with black powder. The space defined by the combustion chamber, sealed by the projectile, is filled with solid propellant [1]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call