Abstract

We address the problem of multipermutation code design in the Ulam metric for novel storage applications. Multipermutation codes are suitable for flash memory where cell charges may share the same rank. Changes in the charges of cells manifest themselves as errors whose effects on the retrieved signal may be measured via the Ulam distance. As part of our analysis, we study multipermutation codes in the Hamming metric, known as constant composition codes. We then present bounds on the size of multipermutation codes and their capacity, for both the Ulam and the Hamming metrics. Finally, we present constructions and accompanying decoders for multipermutation codes in the Ulam metric.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call