Abstract

QoS-aware networking applications such as real-time streaming and video surveillance systems require nearly fixed average end-to-end delay over long periods to communicate efficiently, although may tolerate some delay variations in short periods. This variability exhibits complex dynamics that makes rate control of such applications a formidable task. This paper addresses rate allocation for heterogeneous QoS-aware applications that preserves the long-term end-to-end delay constraint while seeking the maximum network utility cumulated over a fixed time interval. To capture the temporal dynamics of sources, we incorporate a novel time-coupling constraint in which delay sensitivity of sources is considered such that a certain end-to-end average delay for each source over a prespecified time interval is satisfied. We propose an algorithm, as a dual-based solution, which allocates source rates for the next time interval in a distributed fashion, given the knowledge of network parameters in advance. Also, we extend the algorithm to the case that the problem data is not known fully in advance to capture more realistic scenarios. Through numerical experiments, we show that our proposed algorithm attains higher average link utilization and a wider range of feasible scenarios in comparison with the best, to our knowledge, rate control schemes that may guarantee such constraints on delay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call