Abstract

Heat exchanger networks are an integral part of chemical processes as they recover available heat and reduce utility consumption, thereby improving the overall economics of an industrial plant. This paper focuses on heat exchanger network design for multi-period operation wherein the operating conditions of a process may vary with time. A typical example is the hydrotreating process in petroleum refineries where the operators increase reactor temperature to compensate for catalyst deactivation. Superstructure based multi-period models for heat exchanger network design have been proposed previously employing deterministic optimisation algorithms, e.g. (Aaltola, 2002; Verheyen and Zhang, 2006). Stochastic optimisation algorithms have also been applied for the design of flexible heat exchanger networks recently (Ma et al., 2007, 2008). The present work develops an optimisation approach using simulated annealing for design of heat exchanger networks for multi-period operation. A comparison of the new optimisation approach with previous deterministic optimisation based design approaches is presented to illustrate the utilisation of simulated annealing in design of optimal heat exchanger network configurations for multi-period operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call