Abstract

Today’s competitive business environment has resulted in increasing attention to social responsibilities and customer’s attitudes. Buying and returning have become a common practice for different reasons, including incompleteness or immature failure of the product or its failure to meet the customer’s satisfaction. Before the buying and returning cycle can be handled appropriately, companies need a proper logistics network designed following a proper design strategic. In the present research, a forward and reverse logistics network is proposed for product distribution and collection. The contribution of this paper to the literature is the proposal of a multi-period, multi-echelon, integrated forward and reverse supply chain network design problem with transportation mode selection considered. Different kinds of decisions including the determination of optimum number and locations of facilities, facilities opening time and transportation mode selection among different facilities have been considered in this paper. Due to multi-period nature of the problem, the problem is flexible for future periods. A new mixed integer nonlinear programming model was proposed for the introduced problem considering different levels of facility capacities with the maximum profit objective function. As another contribution, a genetic algorithm was developed to cope with problem’s complexity when the problem size goes large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call