Abstract
This paper presents a theoretical analysis of the existence and stability of multi-peak solitons in parity–time-symmetric Bessel optical lattices with defects in nonlinear media. The results demonstrate that there always exists a critical propagation constant μc for the existence of multi-peak solitons regardless of whether the nonlinearity is self-focusing or self-defocusing. In self-focusing media, multi-peak solitons exist when the propagation constant μ > μc. In the self-defocusing case, solitons exist only when μ < μc. Only low-power solitons can propagate stably when random noise perturbations are present. Positive defects help stabilize the propagation of multi-peak solitons when the nonlinearity is self-focusing. When the nonlinearity is self-defocusing, however, multi-peak solitons in negative defects have wider stable regions than those in positive defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.