Abstract

Weakly supervised object detection (WSOD), aiming to detect objects with only image-level annotations, has become one of the research hotspots over the past few years. Recently, much effort has been devoted to WSOD for the simple yet effective architecture and remarkable improvements have been achieved. Existing approaches using multiple-instance learning usually pay more attention to the proposals individually, ignoring relation information between proposals. Besides, to obtain pseudo-ground-truth boxes for WSOD, MIL-based methods tend to select the region with the highest confidence score and regard those with small overlap as background category, which leads to mislabeled instances. As a result, these methods suffer from mislabeling instances and lacking relations between proposals, degrading the performance of WSOD. To tackle these issues, this article introduces a multi-peak graph-based model for WSOD. Specifically, we use the instance graph to model the relations between proposals, which reinforces multiple-instance learning process. In addition, a multi-peak discovery strategy is designed to avert mislabeling instances. The proposed model is trained by stochastic gradients decent optimizer using back-propagation in an end-to-end manner. Extensive quantitative and qualitative evaluations on two publicly challenging benchmarks, PASCAL VOC 2007 and PASCAL VOC 2012, demonstrate the superiority and effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.