Abstract

Duct cancer is a malignant disease with higher mortality rates in males than in females, emphasizing the need for early diagnosis to improve treatment outcomes. Although various imaging modalities such as magnetic resonance imaging (MRI) and computed tomography scan (CT-scan) have been used for pathological analysis, hyperspectral imaging stands out as a promising approach, especially when combined with deep learning techniques. Hyperspectral imaging provides detailed information on tissue composition and biochemical properties, enabling better distinction between cancerous and healthy tissues. Although previous research based on hyperspectral imaging shows high accuracy, no previous research has used a small amount of training data, despite this being the usual case in medical image applications. Therefore, we propose a multi-path residual attention network (MRA-Net) with chunked residual channel attention (CRCA), which is a novel deep learning model specifically designed to address the challenges posed by limited training data, with a particular focus on using hyperspectral images. By leveraging the unique spectral information provided by hyperspectral imaging, MRA-Net extracts distinctive features, enhancing its ability to differentiate between cancerous and healthy tissues.We conducted the training and validation of our model using a publicly accessible dataset, resulting in an accuracy of 84.31% and a weighted harmonic mean of precision and recall (F1 score) of 84.29%, demonstrating its state-of-the-art performance compared to existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.