Abstract

Recently, several experimental results verified the tunneling effect theory of that the electromagnetic energy can be squeezed through an ultra-narrow channel filled with epsilon-near-zero (ENZ) medium. However, the energy squeezing can be only achieved in a narrow region. Here, we present a full-wave simulation of the tunneling effect in multilayered channels full of thin ENZ metamaterials with different plasma frequencies. Thin metallic wires arrays with different radiuses are employed to form these effective ENZ media, whose plasma frequencies are different. The appearance of several passbands in the transmission curve verifies that multi-passband energy tunneling effect can be implemented by multilayer ENZ channels. There are two possible reasons for these peaks, one is the ENZ tunneling effect, and the other is the Fabry-Pérot resonance. For each transmission peak corresponding two-spatial maps of electric field are given, in order to distinguish the causes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call