Abstract

The development of high-power lasers requires optics with very low absorption to avoid detrimental thermal effects. In this work, we discuss our recent developments on the use of lock-in thermography to measure absorption. We apply this technique in a multipass configuration to increase the effective power on the tested samples. We present a system based on a kW-class ytterbium fiber laser operating at 1.07 µm wavelength, which enables exposing samples to 5 kW effective power and measuring absorption in the ppm range. The implementation, calibration procedure, and obtained performance are discussed with some applications to single-layer coatings of HfO2,Ta2O5,TiO2,Nb2O5, and SiO2 deposited by plasma-assisted electron beam deposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.