Abstract

All previous semi-quantum secret sharing (SQSS) protocols have four common features: (1) they adopt product states or entangled states as quantum carriers; (2) the particles prepared by the quantum party are transmitted in a tree-type way; (3) they require the classical parties to possess the measurement capability; and (4) they are only suitable for two-level quantum system. In this paper, we generalize the SQSS concept into the d-level quantum system and propose two multiparty semi-quantum secret sharing (MSQSS) protocols with d-level single-particle states which do not require the classical parties to have the measurement capability. In the first protocol, the particles prepared by the quantum party are transmitted in a tree-type way, while in the second protocol, the particles prepared by the quantum party are transmitted in a circular way. The proposed MSQSS protocols are secure against some famous attacks, such as the intercept-resend attack, the measure-resend attack, the entangle-measure attack and the participant attack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call