Abstract

We present a new scheme for sharing an arbitrary two-qubit quantum state with n agents. In our scheme, the sender Alice first shares n Einsein-Podolsky-Rosen (EPR) pairs in Bell states with n agents. After setting up the secure quantum channel, Alice first applies (n ? 2) Controlled-Not (CNOT) gate operations, and then performs two Bell-state measurements and (n ? 2) single-particle measurements (n >2). In addition, all controllers only hold one particle in their hands, respectively, and thus they only need to perform a single-particle measurement on the respective particle with the basis $${\{{\vert}0\rangle, {\vert}1\rangle\}}$$ . Compared with other schemes with Bell states, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher total efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.