Abstract

We derive a generalized Bell inequality for N qubits which involves an arbitrary number of settings for each of the local measuring apparatuses. The inequality forms a necessary condition for the existence of a local realistic model for the values of a correlation function, given in a n-setting Bell experiment. We show that a local realistic model for the values of a correlation function, given in a two-setting Bell experiment, cannot construct a local realistic model for the values of a correlation function, given in an arbitrary number of n-setting Bell experiment, even though there exist two-setting models for the n measurement directions chosen in the given n-setting experiment. Therefore, the property of two-setting model is different from the property of n-setting model. We discuss classification of local realistic theories in further detail more than the result presented in (J. Phys. A: Math. Theor. 41:155308, 2008). The generalized Bell inequality covers the previous results correctly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.