Abstract

Entity Resolution (ER) is the problem of algorithmically matching records, mentions, or entries that refer to the same underlying real-world entity. Traditionally, the problem assumes (at most) two datasets, between which records need to be matched. There is considerably less research in ER when k > 2 datasets are involved. The evaluation of such multipartite ER (M-ER) is especially complex, since the usual ER metrics assume (whether implicitly or explicitly) k < 3. This paper takes the first step towards motivating a k-tuple approach for evaluating M-ER. Using standard algorithms and k-tuple versions of metrics like precision and recall, our preliminary results suggest a significant difference compared to aggregated pairwise evaluation, which would first decompose the M-ER problem into independent bipartite problems and then aggregate their metrics. Hence, M-ER may be more challenging and warrant more novel approaches than current decomposition-based pairwise approaches would suggest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.