Abstract

The group of automorphisms of Euclidean (embedded in ) dense lattices such as the root lattices D4 and E8, the Barnes–Wall lattice BW16, the unimodular lattice D12+ and the Leech lattice Λ24 may be generated by entangled quantum gates of the corresponding dimension. These (real) gates/lattices are useful for quantum error correction: for instance, the two- and four-qubit real Clifford groups are the automorphism groups of the lattices D4 and BW16, respectively, and the three-qubit real Clifford group is maximal in the Weyl group W(E8). Technically, the automorphism group Aut(Λ) of the lattice Λ is the set of orthogonal matrices B such that, following the conjugation action by the generating matrix of the lattice, the output matrix is unimodular (of determinant ±1, with integer entries). When the degree n is equal to the number of basis elements of Λ, Aut(Λ) also acts on basis vectors and is generated with matrices B such that the sum of squared entries in a row is 1, i.e. B may be seen as a quantum gate. For the dense lattices listed above, maximal multipartite entanglement arises. In particular, one finds a balanced tripartite entanglement in E8 (the two- and three-tangles have the same magnitude 1/4) and a Greenberger–Horne–Zeilinger-type entanglement in BW16. In this paper, we also investigate the entangled gates from D12+ and Λ24, by seeing them as systems coupling a qutrit to two- and three-qubits, respectively. In addition to quantum computing, the work may be related to particle physics in the spirit of Planat et al (2011 Rep. Math. Phys.66 39–51).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call