Abstract

Human cardiac slices have emerged as a promising model of the human heart for scientific research and drug testing. Retaining the normal tissue architecture, a multi-cell type environment, and the native extracellular matrix, human cardiac slices faithfully replicate organ-level adult cardiac physiology. Previously, we demonstrated that human cardiac tissue slices cultured for 24 h maintained normal electrophysiology. In this project, we further optimized the organotypic culture condition to maintain normal electrophysiology of the human cardiac slices for 4 days. The prolonged culture of human cardiac tissue slices demonstrated here enables the study of chronic drug effects, gene therapies, and gene editing. To achieve greater control of the culture environment, we have also developed an automated, self-contained heart-on-a-chip system. The culture system supports media circulation, oxygenation, temperature control, electrical stimulation, and static mechanical loading. The culture parameters can be individually adjusted to establish the optimal culture condition to achieve long-term culture and to minimize tissue dedifferentiation. The development of the heart-on-a-chip technology presented here further encourages the use of organotypic human cardiac slices as a platform for pre-clinical drug testing and research in human cardiac physiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.