Abstract

Aging is associated with a decline in exercise capacity that may be attributable to maladaptations in both skeletal muscle perfusion and metabolism; yet very little is known regarding the real-time, within-muscle interplay between these parameters during physical activity. Therefore, we utilized an unique nuclear magnetic resonance sequence to concomitantly examine changes in lower leg skeletal muscle perfusion and metabolism. In young (26+/-5 years, n=6) and older (70+/-5 years, n=6) healthy volunteers, arterial spin labeling measurements of muscle perfusion were combined with 31 Phosphorous (31P) nuclear magnetic resonance spectroscopy to monitor high-energy phosphate metabolites during and after 5 minutes of moderate-intensity (approximately 5W) plantar flexion exercise. Compared with young, end-exercise perfusion was diminished in older participants (43+/-10 mL/100 g/minute, old; 60+/-7 mL/100 g.minute, young), accompanied by greater phosphocreatine (PCr) depletion (-28%+/-12%, old; -19%+/-7%, young) and elevated inorganic phosphate/PCr (0.41+/-0.2, old; 0.24+/-0.09, young); yet the time constant for PCr recovery (tau, an index of muscle oxidative capacity) was similar between groups (51+/-17 seconds, old; 48+/-7 seconds, young). Together, these preliminary data provide evidence of an age-related decline in tissue perfusion and increased "metabolic stress" during exercise but demonstrate that overall oxidative capacity in the elderly does not appear negatively affected by this relatively hypoperfused state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.