Abstract

To develop a multiparametric magnetic resonance imaging (mpMRI)-based radiomics nomogram and evaluate its performance in differentiating primary mucinous ovarian cancer (PMOC) from metastatic ovarian cancer (MOC). A total of 194 patients with PMOC (n = 72) and MOC (n = 122) confirmed by histology were randomly divided into the primary cohort (n = 137) and validation cohort (n = 57). Radiomics features were extracted from axial fat-saturated T2-weighted imaging (FS-T2WI), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted imaging (CE-T1WI) sequences of each lesion. The effective features were selected by minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) regression to develop a radiomics model. Combined with clinical features, multivariate logistic regression analysis was employed to develop a radiomics nomogram. The efficiency of nomogram was evaluated using the receiver operating characteristic (ROC) curve analysis and compared using DeLong test. Finally, the goodness of fit and clinical benefit of nomogram were assessed by calibration curves and decision curve analysis, respectively. The radiomics nomogram, by combining the mpMRI radiomics features with clinical features, yielded area under the curve (AUC) values of 0.931 and 0.934 in the primary and validation cohorts, respectively. The predictive performance of the radiomics nomogram was significantly superior to the radiomics model (0.931 vs. 0.870, P = 0.004; 0.934 vs. 0.844, P = 0.032), the clinical model (0.931 vs. 0.858, P = 0.005; 0.934 vs. 0.847, P = 0.030), and radiologists (all P < 0.05) in the primary and validation cohorts, respectively. The decision curve analysis revealed that the nomogram could provide higher net benefit to patients. The mpMRI-based radiomics nomogram exhibited notable predictive performance in differentiating PMOC from MOC, emerging as a non-invasive preoperative imaging approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.